Search This Blog

Followers

Saturday, May 13, 2017

Using Algebra and Geometry


Question      


In the regular hexagon below, compare the shaded area to the entire area. 

 There appear to be three tasks.

·         Find the grey area. 

·         Find the total area.

·         Compare the two results.

Where to start? It is often a good idea to make a rough sketch. 

Central congruent triangles


We don’t know if the hexagon has sides of 3 cm or 2 miles or ….  Actually it doesn’t matter.  Each of the sides is 1s.  Partition the hexagon into 6 identical equilateral triangles (One has been shaded pink).  The apothem (or “radius”) is the height of the pink triangle, h_p.



The area of the pink triangle can be found using A= 1/2  (side)(side)  sin (included angle).  Your calculation should show the area of a pink triangle is √3/4. Therefore the area of the entire hexagon is  6√3/4 .

The grey area


Now consider the grey triangle.  The sum of the interior angles is  180(n - 2)°=720°. Therefore one interior angle is 120°. The area of the grey triangle is 1/2  (side)(side)  sin (included angle) =                   1/2 (1)(1)  sin (120°) = √3/4.  
                                
Solution

The ratio of  kX to X  is √3/4  :  6√3/4  so k is 1 6 =  1/6 .


Aha!


Is the figure below a cube or a hexagon?   Actually we can consider the hexagon to be the ‘projection’  (or shadow) of a cube.  Immediately, we see the shaded area is one-sixth of the total area.





Input: A cube(3-D shape) casts a shadow on a wall. Output: A regular hexagon (2-D shape) is partitioned into 6 congruent triangles.  Thanks to students S.H. and A.L. for partitioning the hexagon into congruent triangles.

Conclusion

When you have the answer, don't stop. A hard-won solution may prompt additional insight.